Abstract

The impact of γ-Al(2)O(3) nanoparticles (NP) on specific methanogenic activity (SMA) and humus reducing activity (HRA) in an anaerobic consortium was evaluated. SMA in sludge incubations without γ-Al(2)O(3) was always higher compared with those performed in the presence of 100g/L of γ-Al(2)O(3). Nevertheless, the SMA in incubations with γ-Al(2)O(3) was not completely inhibited, indicating that some methanogenic microorganisms were physiologically active even in the presence of γ-Al(2)O(3) NP during the incubation period (~400h). SMA and HRA of the anaerobic consortium were also conducted in the presence of γ-Al(2)O(3) NP coated with humic acids (HA). Microbial HA reduction occurred 3.7-fold faster using HA immobilized on γ-Al(2)O(3) NP (HA(Imm)), compared with the control with suspended HA (HA(Sus)). Furthermore, immobilized HA decreased the toxicological effects of γ-Al(2)O(3) NP on methanogenesis. Scanning electron microscopy (SEM) images revealed cell membrane damage in those sludge incubations exposed to uncoated γ-Al(2)O(3) NP. In contrast, cell damage was not observed in incubations with HA-coated γ-Al(2)O(3) NP. Methanogenesis out-competed microbial humus reduction regardless if HA was HA(Imm) or HA(Sus). The present study provides a clear demonstration that HA immobilized in γ-Al(2)O(3) NP are effective terminal electron acceptor for microbial respiration and suggests that HA could mitigate the toxicological effects of metal oxide NP on anaerobic microorganisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call