Abstract

BackgroundPrevalence of vitamin D insufficiency/deficiency has been noted in athletic populations, although less is known about recreationally active individuals. Biofortification of natural food sources (e.g. UV radiated mushrooms) may support vitamin D status and is therefore of current scientific and commercial interest. The aim of this study was to assess the impact of a mushroom-derived food ingredient on vitamin D status in recreationally active, healthy volunteers.MethodsTwenty-eight participants were randomly assigned to either: 25 μg (1000 IU) encapsulated natural mushroom-derived vitamin D2; matched-dose encapsulated vitamin D3 or placebo (PL) for 12 weeks. Venous blood samples were collected at baseline, week 6 and 12 for analysis of serum 25(OH)D2 and 25(OH)D3 using liquid chromatography mass spectrometry. Habitual dietary intake and activity were monitored across the intervention.ResultsVitamin D status (25(OH)DTOTAL) was significantly increased with vitamin D3 supplementation from 46.1 ± 5.3 nmol·L− 1 to 88.0 ± 8.6 nmol·L− 1 (p < 0.0001) across the intervention, coupled with an expected rise in 25(OH)D3 concentrations from 38.8 ± 5.2 nmol·L− 1 to 82.0 ± 7.9 nmol·L− 1 (p < 0.0001). In contrast, D2 supplementation increased 25(OH)D2 by + 347% (7.0 ± 1.1 nmol·L− 1 to 31.4 ± 2.1 nmol·L− 1, p < 0.0001), but resulted in a − 42% reduction in 25(OH)D3 by week 6 (p = 0.001). A net + 14% increase in 25(OH)DTOTAL was established with D2 supplementation by week 12 (p > 0.05), which was not statistically different to D3. Vitamin D status was maintained with PL, following an initial − 15% reduction by week 6 (p ≤ 0.046 compared to both supplement groups).ConclusionsThe use of a UV radiated mushroom food ingredient was effective in maintaining 25(OH)DTOTAL in healthy, recreationally active volunteers. This may offer an adjunct strategy in supporting vitamin D intake. However, consistent with the literature, the use of vitamin D3 supplementation likely offers benefits when acute elevation in vitamin D status is warranted.

Highlights

  • Vitamin D in its two most common forms, ergocalciferol and cholecalciferol, is a pro-hormone [1] involved in numerous physiological processes including: bone mineralisation, calcium and phosphorus homeostasis, neuromuscular function, cell growth regulation and immune modulation [2,3,4,5]

  • Worldwide it is estimated that approximately 1 billion people are considered to have vitamin D insufficiency or deficiency (25(OH)DTOTAL < 50 nmol·L− 1) [2]

  • Previous research has demonstrated that trained athletes may be at risk of vitamin D insufficiency or deficiency [14, 15], which can impact on training adaptations, exercise recovery and injury prevalence [16, 17], and should be regularly monitored

Read more

Summary

Introduction

Vitamin D in its two most common forms, ergocalciferol (vitamin D2) and cholecalciferol (vitamin D3), is a pro-hormone [1] involved in numerous physiological processes including: bone mineralisation, calcium and phosphorus homeostasis, neuromuscular function, cell growth regulation and immune modulation [2,3,4,5]. Both forms of vitamin D undertake the same enzymatic hydroxylation reactions to become biologically active. The aim of this study was to assess the impact of a mushroom-derived food ingredient on vitamin D status in recreationally active, healthy volunteers

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call