Abstract

Rapid industrialization in China accelerated environmental pollution by xenophores and trace metals particularly cadmium. Numerous studies have been conducted to address soil contamination using organic and inorganic amendments under pot or incubation conditions, but few were performed under field conditions, particularly in the wheat-growing areas. This study aims to investigate the effectiveness of pre-applied soil amendments for Cd immobilization, changes in soil pH, and metal uptake by wheat. In this study, 12 treatments, i.e., control (CK), lime, DaSan Yuan (DASY), DiKang No. 1 (DEK1), biochar, Fe-biochar, Yirang, CaMgP, and green stabilizing agents (GSA-1, GSA-2, GSA-3, and GSA-4), were evaluated for Cd immobilization in incubation and field experiments. Changes in soil pH and available metal content with amendments were monitored from 30 to 150 days of incubation. Single extraction method and DTPA-extractable and sequential extraction procedures were employed to assess the variations in available Cd contents of field soil. The impact of soil amendments on Cd uptake and bioaccumulation in food part of wheat was measured at harvesting stage in a contaminated site. Lime treatment increased soil pH by 32% and reduced available Cd to 0.213 mg kg−1, as compared to CK (control) in the incubation experiment (0.343 mg kg−1). Effects of the amendments on wheat growth, soil pH, and Cd phytoavailability were reported. Wheat biomass was highest in treatment GSA-2 (13,880 kg ha−1) and GAS-4 resulted in an increase in grain yield (5350 kg ha−1). Soil pH of the treated field at harvesting stage increased up to 6.50, 6.50, and 6.47 by application of GSA-4, GSA-2, and lime, respectively. Cadmium contents in wheat grain were declined significantly in the treatments of GSA-2, GSA-4, and lime. Results of this study revealed a significant decrease in available Cd concentration with the application of amendments. Composite amendments were more effective in terms of metal uptake and bioaccumulation in wheat. In addition, our results indicate the effectiveness of composite amendments in stabilizing Cd in contaminated soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call