Abstract

That both stochastic neutral and deterministic niche forces are in effect in shaping the community assembly and diversity maintenance is becoming an increasingly important consensus. However, assessing the effects of disease on the balance between the two forces in the human microbiome has not been explored to the best of our knowledge. In this article, we applied a hybrid model to address this issue by analyzing the potential effect of HIV infection on the human gut microbiome and adopted a further step of multimodality testing to improve the interpretation of their model. Our study revealed that although niche process is the dominant force in shaping human gut microbial communities, niche process- and neutral process-driven taxa could coexist in the same microbiome, confirming the notion of their joint responsibility. However, we failed to detect the effect of HIV infection in changing the balance. This suggests that the rule governing community assembly and diversity maintenance may be changed by the disturbance from HIV infection-caused dysbiosis. Although we admit that the general question of disease effect on community assembly and diversity maintenance may still be an open question, our study presents the first piece of evidence to reject the significant influence of diseases.

Highlights

  • We admit that the general question of disease effect on community assembly and diversity maintenance may still be an open question, our study presents the first piece of evidence to reject the significant influence of diseases

  • Human gut is an ideal micro ecosystem colonized by countless microbes, where the mechanistic explanation of species abundance distribution (SAD) needs to be clarified

  • The forces that shape and maintain the biodiversity of community are thought to be controlled by deterministic factors, such as host species, genotype, diet, health, competition and niche differentiation, which has been referred to Niche Theory, but it fails to explain a number of rare taxa could coexist in very diverse environments when applied to macro-organisms (Ofiteru et al, 2010; Burns et al, 2015)

Read more

Summary

Introduction

Human gut is an ideal micro ecosystem colonized by countless microbes, where the mechanistic explanation of species abundance distribution (SAD) needs to be clarified. Our study revealed that niche process is the dominant force in shaping human gut microbial communities, niche process- and neutral process-driven taxa could coexist in the same microbiome, confirming the notion of their joint responsibility.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.