Abstract

Drought is the major cause of sugar beet ( Beta vulgaris L.) yield losses in the UK and many other regions where the crop is not normally irrigated. However, drought tolerance has not been a breeding target partly because the extent of the problem was not understood, it is difficult to design effective selection screens, and because of the suspicion that few varietal differences existed. The aim of this study was to evaluate the genetic resources necessary to improve drought tolerance. Specific objectives were to assess the degree of genotypic diversity for drought tolerance, characterise genotypic differences in response to drought, and identify sources of germplasm with greater drought tolerance than current commercial varieties. Over 3 years, 46 beet genotypes representing diverse genetic backgrounds were tested in the field under large polythene covers to impose a drought beginning approximately 40 days after emergence until harvest. Sugar, root and total dry matter yields were measured under drought and irrigated conditions. The percentage green crop cover was measured at regular intervals and used in the calculation of radiation use efficiencies for each genotype. Drought tolerance index (DTI) was computed as the fraction of irrigated yield maintained under drought, normalised by the mean yield across all genotypes in the trial. Seven genotypes were tested in all years, and the data on these were used to calculate yield stability statistics and to estimate broad-sense heritability. There were more than two-fold differences in droughted and irrigated yields between genotypes, and nearly a two-fold difference in DTI. According to an index that combines yield potential and drought tolerance, some genotypes performed better than the three locally adapted commercial varieties included in the test. There were significant effects for genotype, treatment and G×E interactions for yield components and radiation use efficiency. There were also significant genotype differences in harvest index but few significant G×E interactions. Droughted and irrigated yields were positively associated, but there was no close relation between yield potential and DTI. The seven genotypes common to all years differed in yield stability and in sensitivity to water availability. Thus, the genetic resources exist for germplasm improvement. Both yield potential and DTI (which may ensure better yield stability) should be considered simultaneously as breeding targets for drought-prone areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call