Abstract
Soil organic carbon (SOC) and iron/aluminum (Fe/Al) oxides are key cementing agents in driving soil aggregate formation, yet their direct effects and interactions on aggregate under long-term rice straw cyclic utilization (LSCU) in cold regions are still unclear. We compared chemical fertilizer (CF) with LSCU strategy: rice-straw (RS), biochar (RB), and biochar-based fertilizer (BF). We showed that the increase of macroaggregate (2–0.25 mm) is associated with SOC, dissolved organic carbon (DOC), humin carbon (HUC), amorphous and organic complexed Fe/Al oxides (Feo, Fep, Alo, Alp), and in each size of the aggregate, there exists an interaction between SOC (fractions) and Fe/Al oxides. Furthermore, aggregate stability was determined by Feo, Fep, and Alo. LSCU enhances macroaggregate and aggregate stability by increasing SOC and Fe/Al oxides in the bulk soil and aggregates, but there are differences among LSCU. In all treatments, RS had more DOC, fulvic acid carbon (FAC), humic acid carbon (HAC) and Fep; while RB had more SOC, HUC, free Fe/Al oxides (Fed, Ald), Feo, Alp; and BF had more Alo in bulk soil. Over the years, RS increased the DOC, FAC and HAC, whereas RB enhanced the stable SOC fractions (HUC) and promoted high reactive Fe/Al oxides formation (Feo, Fep, Alo), and BF increased DOC, Feo, Fep and Alo. Moreover, RB increases the direct pathway of SOC and Fe/Al oxides to aggregate, promoting aggregate formation. Our study provides new perspective on the mechanisms and promising practice for improving rice straw utilization efficiently, paddy soil fertility and productivity sustainably in cold regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.