Abstract

Simplified, rational, and practical models that account for the effect of elevated temperature on concrete and steel properties are needed. These models will enable engineers to design and assess reinforced concrete (RC) structures to satisfy specific fire performance criteria. This paper introduces a simple method that predicts the flexural and axial behaviour of RC sections during exposure to elevated temperatures. The method is based on using finite difference analysis to estimate the temperature distribution within a concrete section and a modified version of the well-known sectional analysis approach to predict the axial and/or flexural behaviour. A rational approach is proposed to convert the two-dimensional temperature distribution to a one-dimensional distribution. This approach converts a complex problem to a simplified one and thus enables engineers to better understand the behaviour and have higher confidence in the results. The predictions of the proposed method are validated using experimental and analytical studies by others. Additional tests are needed to further validate and improve the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.