Abstract
BackgroundThe use of mapping algorithms have been suggested as a solution to predict health utilities when no preference-based measure is included in the study. However, validity and predictive performance of these algorithms are highly variable and hence assessing the accuracy and validity of algorithms before use them in a new setting is of importance. The aim of the current study was to assess the predictive accuracy of three mapping algorithms to estimate the EQ-5D-3L from the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) among Swedish people with knee disorders. Two of these algorithms developed using ordinary least squares (OLS) models and one developed using mixture model.MethodsThe data from 1078 subjects mean (SD) age 69.4 (7.2) years with frequent knee pain and/or knee osteoarthritis from the Malmö Osteoarthritis study in Sweden were used. The algorithms’ performance was assessed using mean error, mean absolute error, and root mean squared error. Two types of prediction were estimated for mixture model: weighted average (WA), and conditional on estimated component (CEC).ResultsThe overall mean was overpredicted by an OLS model and underpredicted by two other algorithms (P < 0.001). All predictions but the CEC predictions of mixture model had a narrower range than the observed scores (22 to 90 %). All algorithms suffered from overprediction for severe health states and underprediction for mild health states with lesser extent for mixture model. While the mixture model outperformed OLS models at the extremes of the EQ-5D-3D distribution, it underperformed around the center of the distribution.ConclusionsWhile algorithm based on mixture model reflected the distribution of EQ-5D-3L data more accurately compared with OLS models, all algorithms suffered from systematic bias. This calls for caution in applying these mapping algorithms in a new setting particularly in samples with milder knee problems than original sample. Assessing the impact of the choice of these algorithms on cost-effectiveness studies through sensitivity analysis is recommended.Electronic supplementary materialThe online version of this article (doi:10.1186/s12955-016-0547-y) contains supplementary material, which is available to authorized users.
Highlights
The use of mapping algorithms have been suggested as a solution to predict health utilities when no preference-based measure is included in the study
No previous study compared the predictive accuracy of these algorithms in an external sample of people with knee pain and OA. To fill this knowledge gap, the aim of the current study was to compare the predictive accuracy of these algorithms in a large sample of Swedish patients with knee pain and/or knee OA who answered to both EQ-5D-3L and WOMAC questionnaires
Statistical analysis The algorithms were applied to the WOMAC responses and the EQ-5D-3L index scores were predicted
Summary
The use of mapping algorithms have been suggested as a solution to predict health utilities when no preference-based measure is included in the study. The aim of the current study was to assess the predictive accuracy of three mapping algorithms to estimate the EQ-5D-3L from the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) among Swedish people with knee disorders. Two of these algorithms developed using ordinary least squares (OLS) models and one developed using mixture model. It has been shown that different algorithms can result in different incremental costeffectiveness ratios and possibly discrepant funding decisions [5] These concerns imply that assessing the accuracy and validity of algorithms before use them in a new setting is of importance. The former refers to model performance in a new sample with similar case mix as the original sample, while the latter refers to model performance in a new sample with different case mix compared with the original sample [6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.