Abstract

BackgroundThe increasing interest in replacing petroleum-based products by more sustainable materials in the packaging sector gives relevance to cellulose as a biodegradable natural resource. Moreover, its properties can be modified physically, chemically or biotechnologically in order to obtain new bioproducts. Refined cotton linters with high cellulose content were treated with hydrolytic (cellulases) and oxidative (LPMO and Laccase_Tempo) enzymes to evaluate their effect on fibre properties and in improving mechanical fibrillation.ResultsCellulases released cellooligosaccharides, reducing fibre length and partially degrading cellulose. They also improved mechanical fibrillation yielding up to 18% of nanofibrillated cellulose (NFC). LPMO introduced a slight amount of COOH groups in cellulose fibres, releasing cellobionic acid to the effluents. The action of cellulases was improved after LPMO treatment; however, the COOH groups created disappeared from fibres. After mechanical fibrillation of LPMO–cellulase-treated cotton linters a 23% yield of NFC was obtained. Laccase_Tempo treatment also introduced COOH groups in cellulose fibres from cotton, yielding 10% of NFC. Degree of polymerization was reduced by Laccase_Tempo, while LPMO treatment did not significantly affect it but produced a higher reduction in fibre length. The combined treatment with LPMO and cellulase provided films with higher transparency (86%), crystallinity (92%), smoothness and improved barrier properties to air and water than films casted from non-treated linters and from commercial NFC.ConclusionsThe combined enzymatic treatment with LPMO and cellulases boosted mechanical fibrillation of cotton linters, improving the NFC production and providing bioproducts with high transparency and high barrier properties.

Highlights

  • The increasing interest in replacing petroleum-based products by more sustainable materials in the packaging sector gives relevance to cellulose as a biodegradable natural resource

  • The optical, physical and barrier properties of the films casted from the treated fibres were evaluated (Fig. 1) and compared with films obtained from commercial nanofibrillated cellulose (NFC)

  • Improved mechanical fibrillation and 18% NFC yield were obtained with a cellulase mixture ­(Cmix)

Read more

Summary

Introduction

The increasing interest in replacing petroleum-based products by more sustainable materials in the packaging sector gives relevance to cellulose as a biodegradable natural resource. Its properties can be modified physically, chemically or biotechnologically in order to obtain new bioproducts. Refined cotton linters with high cellulose content were treated with hydrolytic (cellulases) and oxidative (LPMO and Laccase_Tempo) enzymes to evaluate their effect on fibre properties and in improving mechanical fibrillation. Cotton linters are an important by-product of the textile industry, being the short fibre fraction that cannot be used in the textile process [1]. They are obtained from cotton plant (Gossypium sp.), an annual shrub harvested for their high industrial interest.

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.