Abstract
The building operation sector in China represents 22% of the national energy consumption and 22% of the carbon emission, of which urban residential buildings accounted for 24% in 2019. Such figures for the housing sector are projected to increase sharply in the near future, while China aims to peak CO2 emissions by 2030 and reach neutrality before 2060. To reduce the impacts of the urban housing sector and address the energy use and waste generated by large-scale demolition and reconstruction, the central government started promoting the energy retrofit of urban residential buildings, raising such policies to the national strategic level. Jiangsu Province is one of the most urbanised, with a rapid growth in the energy consumption of residential buildings. The Multi-Danyuan and Single-Danyuan Apartment built in 1980–1999 are the most representative residential types in its urban areas. While still adequate functionally, they were designed and built to low energy standards and show significant potential for energy retrofit. Nonetheless, their current performance and energy-saving potential are under-researched, while more detailed and reliable data would be critical to support retrofit design and policy making. This study investigates and characterises the typical use and energy performance of the two building types. Additionally, seven measures and six retrofit scenarios were identified based on the optimal energy reductions and regulations from selected countries. The simulations indicate that, without intervention, the energy consumption of the typical urban residential buildings can reach 122 kWh/m2 under the typical high-energy user scenario. By selecting a set of effective energy-saving measures, the operational energy use for heating and cooling can be reduced by up to 52.4%. Current local standards prove cost-efficient, although less effective in reducing energy use compared to international best practices, indicating potential improvements to the contribution of building retrofit towards achieving the national carbon reduction goals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.