Abstract
ABSTRACTA number of clear issues are pertinent when considering whether, or not, to use a remotely sensed dataset. We evaluate these issues here by comparing an aerial hyperspectral image at 1.5 m geometric resolution that comprises 128 narrow bands within a spectral range between 400 nm and 1,000 nm as well as a nine-band Landsat 8 image at 30.0 m geometric resolution. We therefore applied Random Forest (RF) and Support Vector Machine (SVM) classifiers utilizing different input data sets to determine the best thematic accuracy for both types of images by involving all possible bands and then minimized them using variable selection and dimension reduction via Minimum Noise Fraction (MNF). We then compared Landsat images to an aerial hyperspectral one. The results of this analysis revealed that band selections based on variable importance and MNF-transformation improved thematic accuracy assessed as Overall Accuracy (OA). Results reveal a 1.00% improvement in OA via variable selection as 59 bands instead of 128 bands and a 1.50% via MNF-transformation of the hyperspectral image. This improvement was 4.52% in the Landsat image when using a MNF-transformation compared to the best performances without transformation or variable selection. Data also showed that application of Landsat spectral range on hyperspectral bands resulted in different outcomes; specifically, SVM resulted in a 91.50% OA while RF resulted in 95.50% OA. Landscape ecology results show that use of the Landsat image provided fewer land cover patches and that differences encompassed 6.30% of the whole area. We therefore conclude that Landsat data can be used with a number of limitations for accurate ecological mapping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.