Abstract
Mosquitoes function as important vectors for many diseases globally and can have substantial negative economic, environmental, and health impacts. Specifically, West Nile virus (WNv) is a significant and increasing threat to wildlife populations and human health throughout North America. Mosquito control is an important means of controlling the spread of WNv, as the virus is primarily spread between avian and mosquito vectors. This is of particular concern for avian host species such as the Greater sage-grouse (Centrocercus urophasianus), in which WNv negatively impacts fitness parameters. Most mosquito control methods focus on the larval stages. In North America, control efforts are largely limited to larvicides, which require repeated application and have potentially negative ecological impacts. There are multiple potential advantages to using indigenous fish species as an alternative for larval control including lowered environmental impact, decreased costs in terms of time and financial inputs, and the potential for the establishment of self-sustaining fish populations. We tested the efficacy of using fathead minnows (Pimephales promelas) as biological control for mosquito populations in livestock reservoirs of semiarid rangelands. We introduced minnows into 10 treatment reservoirs and monitored an additional 6 non-treated reservoirs as controls over 3 years. Adult mosquitoes of species known to transmit WNv (e.g., Culex tarsalis) were captured at each site and mosquito larvae were also present at all sites. Stable isotope analysis confirmed that introduced fathead minnows were feeding at the mosquito larvae trophic level in all but one treatment pond. Treatment ponds demonstrated suppressed levels of mosquito larva over each season compared to controls with a model-predicted 114% decrease in larva density within treatment ponds. Minnows established self-sustaining populations throughout the study in all reservoirs that maintained sufficient water levels. Minnow survival was not influenced by water quality. Though minnows did not completely eradicate mosquito larvae, minnows are a promising alternative to controlling mosquito larvae density within reservoirs. We caution that careful site selection is critical to avoid potential negative impacts, but suggest the introduction of fathead minnows in reservoirs can dramatically reduce mosquito larva abundance and potentially help mitigate vector-borne disease transmission.
Highlights
Mosquitoes are global pest species and the primary vectors for a variety of diseases such as Malaria, Dengue, Zika, Chikungunya, and West Nile virus (WNv) which can result in major ecological and economic consequences in disease-endemic locations [1]
We modeled the average number of fish per transect using Poisson linear mixed effects models including a random intercept for each pond
We caution that fathead minnows are not a panacea for mosquito larvae control in North American semi-arid rangelands
Summary
Mosquitoes are global pest species and the primary vectors for a variety of diseases such as Malaria, Dengue, Zika, Chikungunya, and West Nile virus (WNv) which can result in major ecological and economic consequences in disease-endemic locations [1]. Mosquitoes are important vectors for WNv transmission and 62 species in North America, mostly from the genus Culex, have the capacity to carry and transmit WNv [4]. Host response to the virus varies from benign to severe. Greater sage-grouse (Centrocercus urophasianus; hereafter, sage-grouse) is a species of conservation concern that suffers severe impacts from WNv [5,6]. Severe impacts have been documented in northeastern Wyoming [8,9]. Given the history of WNv in sage-grouse in northeastern Wyoming [8,9] and the susceptibility of sage-grouse populations in the area, this region is an ideal test case for WNv control efforts
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.