Abstract

Evaluating the energy and environmental indicators allows for identifying the strengths and weaknesses of a system for optimizing material and energy consumption and developing strategies to reduce environmental impacts. This study determined and assessed the energy and environmental indicators of wheat flour production systems. The input and output materials and corresponding energy equivalents were calculated and then the energy indicators and forms. The environmental indicators were assessed by the life cycle assessment method in SimaPro software. The total input and output energies per year of flour production were 287935007 and 286675200 MJ, respectively. Wheat had the highest share (99.19%) of energy consumption in flour production; the energy ratio, productivity, intensity, and net energy gain indexes were equal to 1.02, 0.07 kg/MJ, 13.84, MJ/kg, and 0.31 MJ/kg, respectively. In the flour factory, the share of direct and indirect energy was 0.27 and 99.73%, respectively; the share of renewable and nonrenewable energy was 99.19 and 0.81%, respectively. Wheat input had the largest share of environmental indicators in flour production. The normalization step showed that the most important environmental indicator was marine water ecotoxicity (1.53×105 kg 1.4 DB eq/ton) followed by terrestrial ecotoxicity (36.59×105 kg 1.4 DB eq/ton), eutrophication (5.83kg PO4 eq/ton), and acidification potential (6.57kg SO2 eq/ton) indicator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.