Abstract
It is becoming increasingly recognised that contaminants are not isolated in their threats to the aquatic environment, with recent shifts towards studying the effects of chemical mixtures. In this study, adult marine mussels (Mytilus galloprovincialis) were exposed to two aqueous concentrations of the essential trace metal, Cu (5 and 32 μg L−1), and the non-essential metal, Pb (5 and 25 μg L−1), both individually and in binary mixtures. After a 14-day exposure, metal accumulation was determined in the digestive gland, gill and mantle tissues by inductively coupled plasma-mass spectrometry following acid digestion, and a number of biochemical, neurotoxic and physiological markers were assessed. These included measurements of DNA damage using comet assay, total glutathione concentration, acetylcholinesterase (AChE) activity and clearance rate. Metal accumulation was greater in the digestive gland and gill than in the mantle, and based on computed free ion concentrations, was greater for Pb than for Cu. Copper exhibited an inhibitory effect on Pb accumulation but Pb did not appear to affect Cu accumulation. Comet assay results revealed DNA damage (i.e., genotoxic effects) in all treatments but differences between the exposures were not significant (p > 0.05), and there were no significant differences in AChE activities between treatments. The most distinctive impacts were a reduction in clearance rate resulting from the higher concentration of Cu, with and without Pb, and an increase in glutathione in the gill resulting from the higher concentration of Cu without Pb. Multivariate analysis facilitated the development of a conceptual model based on the current findings and previously published data on the toxicity and intracellular behaviour of Cu and Pb that will assist in the advancement of regulations and guidelines regarding multiple metal contaminants in the environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.