Abstract

To investigate the effects of proactive safety control systems suitable for highway interchanges and improve road traffic safety. Simulated driving experiments were conducted to test the effects of the interchange warning system (IWS) on the ramp, merging section, diverging section, and accident section. Random forest (RF) and SHapley Additive exPlanations (SHAP) are used to analyze the effects between driving behavior and driving risk change in both situations without and with IWS. The results show that (1) as driving risk increases, drivers tend to increase the frequency of braking and engage in more comprehensive saccade behaviors. Concurrently, there is an increase in acceleration and speed variation, leading to a gradual decrease in speed. (2) Compared with the SVR and XGBoost, RF can better fit the nonlinear relationship between driving risk and driver behavior characteristics with the application of IWS. (3) The IWS mainly reduces driving risk by affecting operation behavior. When the mean speed, speed standard deviation (SD), acceleration SD, and maximum braking depth are at 40 to 70 km/h, 3 to 10 km/h, 0 to 0.6 m/s2, and 14 to 16, respectively, there is a significant reduction in driving risk. The application of the IWS expands the effective range of mean speed and speed SD for reducing driving risk to 40 to 100 km/h and 3 to 15 km/h, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.