Abstract

BackgroundIn the last years pectin and other hydrocolloids were tested for improving the color stability and the retention of bioactive compounds in gelled fruit-based products. In line with these concerns, our study has been directed to quantify the changes in antioxidant status and color indices of blackberry jam obtained with different types of pectin (degree of esterification: DE, degree of amidation: DA) and doses in response to processing and storage for 1, 3 and 6 months at 20°C.ResultsBlackberry jam was obtained by a traditional procedure used in households or small-scale systems with different commercial pectins (HMP: high-methoxyl pectin, LMP: low-methoxyl pectin and LMAP: low-methoxyl amidated pectin) added to three concentrations (0.3, 0.7 and 1.0%) and investigated in terms of total monomeric anthocyanins (TMA), antioxidant capacity expressed as ferric reducing antioxidant power (FRAP), total phenolics (TP), color density (CD) and percent of polymeric color, PC (%). Thermal processing resulted in significant depreciation of analyzed parameters reported to the corresponding values of fresh fruit as follows: TMA (69-82%), TP (33-55%) and FRAP (18-52%). Biologically active compounds and color were best retained one day post-processing in jams with LMAP followed by samples with LMP and HMP. Storage for 6 months brings along additional dramatic losses reported to the values recorded one day post-processing as follows: TMA (31-56%), TP (29-51%) and FRAP (20-41%). Also, both processing and storage resulted in significant increases in PC (%). The pectin type and dosage are very influential factors for limiting the alterations occurring in response to processing and storage. The best color retention and the highest TMA, TP and FRAP were achieved by LMAP, followed by LMP and HMP. Additionally, a high level of bioactive compounds in jam could be related to a high dose of pectin. LMAP to a level of 1% is the most indicated to provide the highest antioxidant properties in jam.ConclusionsThe retention of bioactive compounds and jam color stability were strongly dependent on the pectin type and dosage. By a proper selection of pectin type and dose could be limited the losses recorded in response to processing and storage.

Highlights

  • In the last years pectin and other hydrocolloids were tested for improving the color stability and the retention of bioactive compounds in gelled fruit-based products

  • The results reported by Sadilova et al [16] have revealed that during heating, the anthocyanins degradation generally cause the pigments discoloration having a great impact on color quality and on their in vitro antioxidant capacity

  • Blackberry jam obtained with different types of pectin (DE, Degree of amidation (DA)) applied at three concentrations were analyzed one day post-processing (0) and after 1, 3 and 6 months of storage at 20°C in terms of total monomeric anthocyanins (TMA), color density (CD), Polymeric color (PC) (%), total phenolics (TP) and ferric reducing antioxidant power (FRAP) values

Read more

Summary

Results

Blackberry jam was obtained by a traditional procedure used in households or small-scale systems with different commercial pectins (HMP: high-methoxyl pectin, LMP: low-methoxyl pectin and LMAP: low-methoxyl amidated pectin) added to three concentrations (0.3, 0.7 and 1.0%) and investigated in terms of total monomeric anthocyanins (TMA), antioxidant capacity expressed as ferric reducing antioxidant power (FRAP), total phenolics (TP), color density (CD) and percent of polymeric color, PC (%). Thermal processing resulted in significant depreciation of analyzed parameters reported to the corresponding values of fresh fruit as follows: TMA (69-82%), TP (33-55%) and FRAP (18-52%). Active compounds and color were best retained one day post-processing in jams with LMAP followed by samples with LMP and HMP. Storage for 6 months brings along additional dramatic losses reported to the values recorded one day post-processing as follows: TMA (31-56%), TP (29-51%) and FRAP (20-41%). Both processing and storage resulted in significant increases in PC (%). The best color retention and the highest TMA, TP and FRAP were achieved by LMAP, followed by LMP and HMP. LMAP to a level of 1% is the most indicated to provide the highest antioxidant properties in jam

Conclusions
Background
Results and discussion
Conclusion
21. Kasapis S
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.