Abstract

Cascade dams have exerted significant effects on river ecosystems. To quantitatively assess dam-induced effects on river ecological status, a novel multi-species interaction-based index of biotic integrity (Mt-IBI) was developed. Benthic microbiota was selected as a bio-indicator for its sensitivity to the environmental disturbance. An environmental DNA metabarcoding tool was used to identify microbiota (bacteria, protozoan, and metazoan). The Mt-IBI was applied to assess the ecological status of the Hanjiang River, a representative dam-affected river in China. Fifteen sampling sites along the Hanjiang River were sampled in June 2018. Seven core metrics were screened from a total of 364 candidate metrics to calculate the value of the Mt-IBI. The Mt-IBI of the Hanjiang River ranged from 1.90 to 6.39, with a mean value of 4.02. The mean values of Mt-IBI at the reservoir and riverine side of dams were 2.11 and 3.81, respectively. The downstream reach without dam constructions had the highest mean Mt-IBI (5.79). Thus, the continuity of the river was strongly related to the Mt-IBI. Structural equation models (SEMs) were further established to identify the dominant environmental variables in the dam-affected river. The SEMs indicated that flow velocity (coefficient 0.749) was the most important determinant of ecological status in the Hanjiang River. Water organic matter also played a vital role in determining the ecological status of the Hanjiang River, and exerted the strongest direct effect (P < 0.001, r = 0.712). The reliability of SEMs was verified by building a support vector regression model (R2 = 0.8141). This study can provide new tools for ecological assessment and diagnosis, and provide a new perspective for the management of cascade dams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.