Abstract

ABSTRACT Maintenance in a stochastic job shop scheduling environment significantly impacts real-time scheduling problems with the environmental aspect. This simulation research assesses the effect of a reliability-based preventive maintenance approach to system performance for considering job shop scheduling problems with sequence-dependent setup time (SDST). Two types of reliability-based maintenance approaches are considered, i.e., reliability-centered preventive maintenance (RCPM) and a reliability-centered periodic preventive maintenance approach (RCPPM). The shop comprises 10 different machines and six job types. Six scheduling and two energy-oriented performance measures (Pms) are considered for evaluating the system’s performance. Results reveal that lower levels of reliability, namely, 0.74, 0.78, and 0.82 recommended for mean flow time, makespan, average operation energy consumption, average idle energy consumption, and total setups Pms. A 0.74 level of reliability is recommended for mean tardiness and the number of tardy jobs Pms for the RCPM approach. RCPPM approach provides the best system Pms by mean flow time, makespan, mean tardiness, average operation energy consumption, average idle energy consumption, and the number of tardy jobs when maintenance time is 5% of operation time. In contrast, mean setup, and total setups Pms are independent of maintenance time. Both approaches get compared, and its statistical analysis shows that if maintenance time is 15% or more than 15% of the operation time, the RCPM method is recommended. If maintenance time is 10% or less than 10% of the operation time, maintenance planning is recommended using the RCPPM approach. Considering real-time scheduling work with the environmental aspect represents the novelty of the present study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.