Abstract

This work analyzes the severity and risk associated with automatic dependent surveillance-broadcast (ADS-B) message drop-out in detect and avoid (DAA) function of unmanned aircraft systems (UAS). Performance assessment of the universal access transceiver (UAT) ADS-B message implies that, in some cases, ADS-B fails to update within a specified update interval, which is referred to as ‘drop-out’ in this work. ADS-B is a fundamental surveillance sensor for both class 1 and class 2 DAA systems. Message loss or drop-out has been found as one of the common limitations of the ADS-B system. The key feature of this study is incorporating the update rate of real ADS-B data transmitted from the manned aircraft. The data were received from the Grand Forks International Airport, North Dakota. Monte Carlo method has been adopted to resolve encounter scenarios in the presence of drop-out. The change in the alert triggered by the UAS DAA in the presence of ADS-B drop-out has been investigated. Furthermore, the risk matrices are created to quantify the associated risk with drop-out affected alerts. Simulation results depict that both the duration of drop-out and DAA look-ahead time affect the alert-triggering function of UAS. With a small look-ahead window and longer duration of drop-out, the number of warning alerts increases. Also, alerts are affected more during an overtaking encounter than that of a head-to-head encounter. A system-level analysis is also carried out to recognize the potential reasons behind the ADS-B drop-out.

Highlights

  • Over the past several years, airspace has become congested with the increasing number of flights [1]

  • This study made use of hypothetical encounter scenarios to quantify the risk of automatic dependent surveillance-broadcast (ADS-B) dropout

  • The risk matrix established is based on simulation scenarios and represents the risk for three different scenarios studied

Read more

Summary

Introduction

Over the past several years, airspace has become congested with the increasing number of flights [1]. According to the Federal Aviation Administration (FAA), the use of small unmanned aircraft systems (SUAS) for commercial operations has greatly increased in recent years. This is for commercial purposes, but hobbyists are using this platform for various recreational activities. As one of the fundamental components of NextGen, significant studies are ongoing on various aspects of ADS-B This includes, but is not limited to, security and verification of messages [17,18,19], experimental attack analysis [20,21,22,23,24,25], safety assessment [26,27,28], etc.

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call