Abstract

Wildfires pose complex challenges to policymakers and fire agencies. Fuel break networks and area-wide fuel treatments are risk-management options to reduce losses from large fires. Two fuel management scenarios covering 3% of the fire-prone Algarve region of Portugal and differing in the intensity of treatment in 120-m wide fuel breaks were examined and compared with the no-treatment option. We used the minimum travel time algorithm to simulate the growth of 150 000 fires under the weather conditions historically associated with large fires. Fuel break passive effects on burn probability, area burned, fire size distribution and fire transmission among 20 municipalities were analysed. Treatments decreased large-fire incidence and reduced overall burnt area up to 17% and burn probability between 4% and 31%, depending on fire size class and treatment option. Risk transmission among municipalities varied with community. Although fire distribution shifted and large events were less frequent, mean treatment leverage was very low (1 : 26), revealing a very high cost–benefit ratio and the need for engaging forest owners to act in complementary area-wide fuel treatments. The study assessed the effectiveness of a mitigating solution in a complex socioecological system, contributing to a better-informed wildland fire risk governance process among stakeholders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call