Abstract

Anthropogenic activities such as mining, smelting industries, and the application of pesticides in agriculture might result in contamination of multiple heavy metals in the environment. Heavy metal contamination of sediment is a serious environmental problem, and thus the remediation of contaminated sediment is a worldwide challenge. Several strategies have been developed for the remediation of contaminated sediment, however the ecological risk and ecotoxicity of the restored sediment have rarely been evaluated. We assessed whether river sediment highly contaminated with heavy metals could be restored using microbial bioleaching followed by evaluating the residual toxicity and ecological risk of the microbially remediated sediment. Sequential extraction revealed that the bioavailable levels of Cu, Ni, and Zn in the contaminated sediment exceeded sediment quality guideline (SQG) thresholds. It was consequently found that acidophilic sulfur-oxidizing Acidicaldus sp. SV5 effectively bioleached Cu, Ni, and Zn from the contaminated sediment, reducing the bioavailable fraction of these elements below SQG thresholds. The ecological risk assessment indicated that SV5-driven remediation significantly reduced the potential ecological risk of the contaminated sediment. The residual ecotoxicity of the microbially remediated sediment was also tested with the soil nematode Caenorhabditis elegans. There was a significant decrease in the body burden of Cu, Ni, and Zn in C. elegans and a reduction in the toxicological effect on survival, growth, and reproduction in the microbially remediated sediment. Our study suggests that a combination of chemical analysis, chemical-based ecological risk assessment, and ecotoxicity tests would be helpful for the development of efficient and eco-friendly strategies for the restoration of contaminated sediment, which could be incorporated into sediment quality management practices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.