Abstract
In the context of the growing demand for sustainable consumption, especially in the fashion industry, leather remains an intriguing material. Its durability and quality not only ensure the longevity of products but also support the rise of practices like second-hand use and upcycling. This study evaluates the longevity of tanning alternatives - triazine-based and a combination of synthetic and vegetable tannins - compared to the widely used chrome tanning. Artificial aging processes, incorporating heat, humidity, UV exposure, and microbial conditions, were applied to leathers tanned with the three methods. Physico-mechanical measurements, commonly specified in industrial standards, were conducted alongside chemical analyses to evaluate potential degradations associated with chrome tanning as the reference. The aging processes impacted leather performances, but finished leathers remained suitable for applications. Indeed, results on finished leathers indicated minimal degradation after aging, emphasizing the importance of the protective layer for longevity. Considerations include adapting finishing to surface structures and addressing potential stiffness in triazine-tanned leather, necessitating further exploration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.