Abstract

BackgroundThe Lake Victoria basin is one of the most persistent hotspots of schistosomiasis in Africa, the intestinal form of the disease being studied more often than the urogenital form. Most schistosomiasis studies have been directed to Schistosoma mansoni and their corresponding intermediate snail hosts of the genus Biomphalaria, while neglecting S. haematobium and their intermediate snail hosts of the genus Bulinus. In the present study, we used DNA sequences from part of the cytochrome c oxidase subunit 1 (cox1) gene and the internal transcribed spacer 2 (ITS2) region to investigate Bulinus populations obtained from a longitudinal survey in Lake Victoria and neighbouring systems during 2010–2019.MethodsSequences were obtained to (i) determine specimen identities, diversity and phylogenetic positions, (ii) reconstruct phylogeographical affinities, and (iii) determine the population structure to discuss the results and their implications for the transmission and epidemiology of urogenital schistosomiasis in Lake Victoria.ResultsPhylogenies, species delimitation methods (SDMs) and statistical parsimony networks revealed the presence of two main groups of Bulinus species occurring in Lake Victoria; B. truncatus/B. tropicus complex with three species (B. truncatus, B. tropicus and Bulinus sp. 1), dominating the lake proper, and a B. africanus group, prevalent in banks and marshes. Although a total of 47 cox1 haplotypes, were detected within and outside Lake Victoria, there was limited haplotype sharing (only Haplotype 6 was shared between populations from Lake Victoria open waters and neighbouring aquatic systems) – an indication that haplotypes are specific to habitats.ConclusionsThe Bulinus fauna of Lake Victoria consists of at least B. truncatus, B. tropicus, Bulinus sp. 1 (B. trigonus?) and B. ugandae. The occurrence and wide distribution of Bulinus species in Lake Victoria potentially implies the occurrence of urogenital schistosomiasis in communities living along the shores and on islands of the lake who depend solely on the lake for their livelihood. More in-depth studies are needed to obtain a better picture of the extent of the disease in the Lake Victoria basin.

Highlights

  • The Lake Victoria basin is one of the most persistent hotspots of schistosomiasis in Africa, the intestinal form of the disease being studied more often than the urogenital form

  • Species identification and phylogenetic relationships Both Maximum Likelihood (ML) and Bayesian Inference (BI) analyses of concatenated genes generated strongly supported phylogenies that revealed the presence of two main Bulinus groups in Lake Victoria (Fig. 2)

  • Clade I comprised of B. truncatus/tropicus complex and Clade II contained the B. africanus group Clade I exhibited a complex structure that corresponded to Bulinus specimens that inhabited open waters and sandy beaches of Lake Victoria

Read more

Summary

Introduction

The Lake Victoria basin is one of the most persistent hotspots of schistosomiasis in Africa, the intestinal form of the disease being studied more often than the urogenital form. Schistosomiasis is a parasitic disease caused by digenean trematodes of the genus Schistosoma and is a socio-notable disease in tropical and subtropical regions. It is prevalent in more than 78 countries and territories infecting more than 250 million people worldwide, most of whom inhabit sub-Saharan Africa [1, 2]. More than 20 Schistosoma species are recognised, only Schistosoma mansoni and S. haematobium are ubiquitously known in sub-Saharan Africa due to their capability to cause intestinal and urogenital schistosomiasis, respectively [1, 3, 4]. Schistosoma species, like other digenean trematodes, utilise pulmonate snails to complete their two-host life-cycles; i.e. Biomphalaria spp. for S. mansoni and Bulinus spp. for S. haematobium [1, 3, 4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call