Abstract

Ion mobility spectrometry (IMS) has become a mainstream approach to fractionate complex mixtures, separate isomers, and assign the molecular geometries. All modalities were grouped into linear IMS (based on the absolute ion mobility, K) and field asymmetric waveform IMS (FAIMS) relying on the evolution of K at a high normalized electric field (E/N) that induces strong ion heating. In the recently demonstrated low-field differential (LOD) IMS, the field is too weak for significant heating but locks the macromolecular dipoles to produce novel separations controlled by the relevant directional collision cross sections (CCSs). Here, we show LODIMS for mass-selected species, exploring the dipole alignment across charge states for the monomers and dimers of an exemplary protein, the alcohol dehydrogenase. Distinct conformational families for aligned species are revealed with directional CCS estimated from the field-dependent trend lines. We set up a model to extract the fractions of pendular conformers as a function of field intensity and translate them into dipole moment distributions. These developments make a critical step toward establishing LODIMS as a new tool for top-down proteomics and integrative structural biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.