Abstract

Facing water and land scarcity, planting non-food biofuel crops on marginal land depending on natural rainfall has been considered as an attractive means of achieving sustainable biofuel development. However, the complex connection between rainfall and marginal land resources in spatial-temporal distribution affects the optimal planting layout of non-food biofuel crops as well as the assessment of biofuel potential, especially in arid areas. In this study, we constructed a water-land-biofuel nexus centered on non-food biofuel crops, optimized the layout of three non-food biofuel crops, sweet sorghum, Jerusalem artichoke and switchgrass, based on fuzzy mathematics method under the water-land-biofuel nexus perspective, determined yield-rainfall curve to calculate the development potential of non-food biofuel crops. The results showed that sweet sorghum and Jerusalem artichoke are more suitable for planting in Ningxia. Three potential scenarios are set up under different growth conditions and agricultural technologies. The theoretical biofuel production is [9.64× 107, 10.93× 107] GJ, which was verified by the result that the biofuel production per unit area is close to the lower limit of the test production range. It can also be speculated that there may exist irrigation supply and fertilization in the actual crops planting in other studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call