Abstract

The strong coupling of light and matter within electromagnetic resonators leads to the formation of cavity polaritons whose hybrid nature may help certain ground and excited state chemical processes. To help enable the development of polariton chemistry, we have developed and applied a spectroscopic technique to leverage the relatively larger spatial coherence of polaritons to assess the determinants of relaxation in hybrid light-matter states. By exciting the lower polariton (LP) state in cavity samples filled with different metalloporphyrin chromophores, we measured and modeled angle-resolved photoluminescence excitation spectra. Our results suggest that the shortest lived constituent of the LP state characterized by specific Hopfield coefficients limits the light absorption of the intracavity molecules, which we equate with the effective polariton lifetime. Our results suggest that researchers need to consider the lifetimes of both photons and excitons participating in strong light-matter coupling when designing polaritonic systems and the methods they can use to assess the relaxation of polaritonic states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.