Abstract

The rapid growth and expansion of urbanized landscapes in cities has resulted in an increase in air temperature and has lowered the bioclimatic comfort levels in urban landscapes. Recent studies to estimate the climatic response of urban landscape conversion have mostly examined the relationship between land use/land cover (LULC) change and land surface temperature (LST) data collected using advanced remote sensing (RS) techniques instead of atmospheric temperature. In this respect, four decadal Landsat images from the 1980s were used to investigate the impact of landscape transformation on atmospheric temperature. The mean and average minimum and maximum monthly air temperature datasets were used in the analysis. The CORINE (Coordination of Information on Environment) index was used to determine LULC diversity in an urban development boundary and urban periphery. Consequently, clustered LULC change values for the last three decades were integrated with decadal air temperature anomalies. The findings revealed an important relationship between monthly mean air temperature and land changes over recent decades, which resulted in an increase in urban fabric land use, deforestation land cover changes and conversion of permanent crop fields to artificial green houses for earlier vegetable production; the R-sqr values for these regressions were 97.7%, 88.5% and 90.6% respectively. On the other hand, the most important increasing temperature trends were obtained for the average monthly minimum air temperature, which supports the global warming concerns of the IPCC (Intergovernmental Panel on Climate Change) and related studies, which have concluded that an increased nighttime temperature results in urban heat islands (UHIs). The results should be used to support better urban landscape plans and architectural designs to improve human thermal comfort for sustainable urban life in Mediterranean cities. Street geometry and orientation to wind breeze, the Height/Width H/W ratio of buildings, and sizes of open and green spaces should be examined carefully in urban planning and design for climate adaptation.

Highlights

  • Land use refers to the human activities of developing and decreasing natural landscape resources.Agricultural, forestry, residential and industrial lands represent different land use types

  • The objective of this research was to investigate the effect of land use/land cover (LULC) change on the air temperature of the biosphere in coastal Mediterranean cities in decadal periods since the 1980s

  • Significant results were obtained between the mean monthly air temperature anomalies and urban land uses, forest, permanent crop land cover, and change in water bodies

Read more

Summary

Introduction

Agricultural, forestry, residential and industrial lands represent different land use types Human activities, such as deforestation, expansion of artificial use of non-agricultural vegetated areas and croplands, grassland degradation, urbanization and other large-scale land uses change the natural quality of land cover. According to the Intergovernmental Panel on Climate Change (IPCC) [1], these activities may eventually result in an average air temperature increase of 4 °C by the year 2100. This will change the physical characteristics of the land surface and will affect the land-atmosphere energy interaction [2,3]. Urbanization and deforestation cause an increase in albedo, with a consequent increase in atmospheric temperatures, which will affect the thermal comfort of buildings and city life [4,5]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call