Abstract

BackgroundUnderstanding how allergies to 1 environmental fungus can lead to cosensitization to related fungi is important for the clinical management of allergies. Cosensitization can be caused by monosensitization combined with antibody cross-reactivity, or by coexposures driving independent sensitizations. A pioneering study showed that patterns of IgE cosensitization among 17 fungal species mirror fungal phylogeny. This could reflect either epitope or habitat similarity. Thanks to an improved understanding of fungal phylogeny, larger serologic testing datasets, and environmental data on household fungi, we can now characterize the relationship between cosensitization, species similarity, and likely coexposure with greater precision. ObjectiveTo assess the degree to which IgE cosensitization in a group of 17 fungi can be attributed to species similarity or environmental coexposure. MethodsCosensitization patterns among 17 fungal species were estimated from a dataset of approximately 8 million serologic tests on 1.6 million patients. Linear regression of cosensitization on phylogenetic distance and imputed coexposure was performed. In addition, branch lengths for the phylogenetic tree were re-estimated on the basis of cosensitization and compared with corresponding phylogenetic branch lengths. ResultsPhylogenetic distance explains much of the observed cosensitization (adjusted r2 = .68, p < .001). Imputed environmental coexposures and test co-ordering patterns do not significantly predict cosensitization. Branch length comparisons between the cosensitization and phylogenetic trees identified several species as less cosensitizing than phylogenetic distance predicts. ConclusionCombined evidence from clinical IgE testing data on fungi, along with phylogenetic and environmental exposure data, supports the hypothesis that cosensitization is caused primarily by monosensitization plus cross-reactivity, rather than multisensitization. A serologic test result should be interpreted as pointing to a group of related species that include the sensitizing agent rather than as uniquely identifying the agent. The identified patterns of cross-reactivity may help optimize test panel design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.