Abstract

AbstractThe Paleocene‐Eocene Thermal Maximum is marked by a prominent negative carbon‐isotope excursion, reflecting the injection of thousands of gigatons of isotopically light carbon into the atmosphere. The sources of the isotopically light carbon remain poorly constrained. Utilizing a multiproxy geochemical analysis (osmium isotopes, mercury, sulfur, and platinum group elements) of two Paleocene‐Eocene boundary records, we present evidence that a comet impact and major volcanic activity likely contributed to the environmental perturbations during the Paleocene‐Eocene interval. Additionally, Earth system model simulations indicate that stratospheric sulfate aerosols, commensurate with the impact magnitude, were likely to have caused transient cooling and reduced precipitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.