Abstract

Photochemical formation of reactive oxygen species from dissolved organic matter (DOM) is incompletely understood, especially in the case of hydroxyl radical (•OH) production. Many studies have used various probes to detect photochemically produced •OH from DOM, but the fundamental reactions of these probes are not necessarily specific for free •OH and may also detect lower-energy hydroxylation agents. In this study, two tests were applied that have previously been used as a diagnostic for the presence of free •OH: methane quenching of •OH and hydroxybenzoic acid (hBZA) product yields. Upon application of these two tests to a set of five DOM isolates, it was found that methane quenching and the hBZA ratio results were not necessarily consistent. Overall, the results provide compelling evidence that all isolates studied photochemically produce free •OH. The hydroxylating acitivity of Elliot Soil Humic Acid and Pony Lake Fulvic Acid, however, also had a significant contribution from a photochemically generated hydroxylating agent that is lower in energy than free •OH. Catalase quenching experiments were conducted to assess whether hydrogen peroxide was the immediate precursor to hydroxyl in these systems. In all cases, catalase addition slowed photohydroxylation of terephthalate, but the contribution of hydrogen peroxide photolysis was determined to be less than 50%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.