Abstract

Characterizing the hygroscopic behavior of macromolecular assemblies is crucial for understanding biological processes as well as to develop tailor-made polysaccharides-based products. In this work, assemblies consisting of nanocelluloses (CNC or CNF) and/or glucomannan in different ratio were studied at different water activity levels, using a multi-analytical approach that combined Dynamic Vapor Sorption (DVS), Time-Domain Nuclear Magnetic Resonance (TD-NMR) and solid-state NMR (ss-NMR). The water retention capacity of the films, as a function of their composition, showed that an enrichment in konjac glucomannan in association with cellulose increased the water absorption capacity but decreased the water retention capacity. In addition, the combination of CNC and glucomannan appears to reduce the water absorption capacity of each polymer. Correlating the findings from the various methods allowed us to propose the use of TD-NMR data for predicting the water retention capacity. These results, summarized in a schematic representation, offer new insights into the organization of water molecules in polysaccharide assemblies in various humidity conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.