Abstract

Soils perform many functions that are vital to societies, among which their capability to regulate global climate has received much attention over the past decades. An assessment of the extent to which soils perform a specific function is not only important to appropriately value their current capacity, but also to make well-informed decisions about how and where to change soil management to align the delivered soil functions with societal demands. To obtain an overview of the capacity of soils to perform different functions, accurate and easy-to-use models are necessary. A problem with most currently-available models is that data requirements often exceed data availability, while generally a high level of expert knowledge is necessary to apply these models. Therefore, we developed a qualitative model to assess how agricultural soils function with respect to climate regulation. The model is driven by inputs about agricultural management practices, soil properties and environmental conditions. To reduce data requirements on stakeholders, the 17 input variables are classified into either (1) three classes: low, medium and high or (2) the presence or absence of a management practice. These inputs are combined using a decision tree with internal integration rules to obtain an estimate of the magnitude of N2O emissions and carbon sequestration. These two variables are subsequently combined into an estimate of the capacity of a soil to perform the climate regulation function. The model was tested using data from long-term field experiments across Europe. This showed that the model is generally able to adequately assess this soil function across a range of environments under different management practices. In a next step, this model will be combined with models to assess other soil functions (soil biodiversity, primary productivity, nutrient cycling and water regulation and purification). This will allow for the assessment of the trade-offs between these soil functions for agricultural land across Europe.

Highlights

  • Soils in agroecosystems play an important role regulating the global climate as they have contributed substantially to the increase in atmospheric greenhouse gases such as carbon dioxide (CO2) and nitrous oxide (N2O) during the past centuries (Ciais et al, 2013; Le Quéré et al, 2018)

  • We developed a relatively simple, qualitative model to assess the climate regulation potential of agricultural soils that can be coupled to structured models assessing other soil functions

  • The model has been developed based on the rationale that it should make a reliable assessment of the climate regulation function of agricultural soils based on data that is readily available

Read more

Summary

Introduction

Soils in agroecosystems play an important role regulating the global climate as they have contributed substantially to the increase in atmospheric greenhouse gases such as carbon dioxide (CO2) and nitrous oxide (N2O) during the past centuries (Ciais et al, 2013; Le Quéré et al, 2018). The conversion of soil organic carbon (SOC) to CO2 in agroecosystems mainly occurs as a consequence of the conversion of native vegetation to arable land. This process results in an average loss of topsoil organic carbon (OC) of ca. N2O emissions occur both directly after application on the field or indirectly, after reactive N has been transferred to other ecosystems, as nitrate (NO−3 ) losses or ammonia (NH3) emissions (Galloway et al, 2003; Zhou et al, 2017) These emissions are not trivial, as greenhouse gas emissions from agroecosystems have constituted ca. These emissions are not trivial, as greenhouse gas emissions from agroecosystems have constituted ca. 11.2 % of total emissions (mainly as N2O and CH4), while the share resulting from land use changes associated with food production was ca. 10.0 % in 2010 (mainly as CO2) (Tubiello et al, 2015)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.