Abstract
An operational measure that is inspired by migrant birds aiming toward the mitigation of aviation climate impact is to fly in aerodynamic formation. When this operational measure is adapted to commercial aircraft it saves fuel and is, therefore, expected to reduce the climate impact of aviation. Besides the total emission amount, this mitigation option also changes the location of emissions, impacting the non-CO2 climate effects arising from NOx and H2O emissions and contrails. Here, we assess these non-CO2 climate impacts with a climate response model to assure a benefit for climate not only due to CO2 emission reductions, but also due to reduced non-CO2 effects. Therefore, the climate response model AirClim is used, which includes CO2 effects and also the impact of water vapor and contrail induced cloudiness as well as the impact of nitrogen dioxide emissions on the ozone and methane concentration. For this purpose, AirClim has been adopted to account for saturation effects occurring for formation flight. The results of the case studies show that the implementation of formation flights in the 50 most popular airports for the year 2017 display an average decrease of fuel consumption by 5%. The climate impact, in terms of average near surface temperature change, is estimated to be reduced in average by 24%, with values of individual formations between 13% and 33%.
Highlights
There is a large pressure on and interest of the aviation industries to reduce climate impact, while in turn aiming for as little additional cost as possible
Our case studies showed reduced emissions of 6% in CO2 and 11% in NOx, the Flying in formation as inspired by migrant birds seems to be a promising option to reduce flown distance increased by 1–3% due to detours to the rendezvous points
Our case studies showed reduced emissions of 6% in CO2 and 11% in NOx, total formation is reduced by about 23%
Summary
There is a large pressure on and interest of the aviation industries to reduce climate impact, while in turn aiming for as little additional cost as possible. The indicated method can be adopted by commercial aviation and leads to substantial fuel savings as the thrust of the trailing aircraft, which is literally surfing on the vortex of the leading aircraft, can be reduced during cruise flight [2]. This procedure can likewise be called aircraft wake-surfing for efficiency (AWSE). This in turn changes the climate effect of aviation as the amount and the location of the emissions change due to the formation flight and the AWSE benefits. The climate benefit is even enlarged, as saturation effects occurring behind the formation can lead to an additional benefit in terms of climate impact
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.