Abstract
In the context of the Kyoto Protocol, the mandatory accounting of Afforestation and Reforestation (AR) activities requires estimating the forest carbon (C) stock changes for any direct human-induced expansion of forest since 1990. We used the Carbon Budget Model (CBM) to estimate C stock changes and emissions from fires on AR lands at country level. Italy was chosen because it has one of the highest annual rates of AR in Europe and the same model was recently applied to Italy’s forest management area. We considered the time period 1990-2020 with two case studies reflecting different average annual rates of AR: 78 kha yr-1, based on the 2013 Italian National Inventory Report (NIR, official estimates), and 28 kha yr-1, based on the Italian Land Use Inventory System (IUTI estimates). We compared these two different AR rates with eight regional forest inventories and three independent local studies. The average annual C stock change estimated by CBM, excluding harvest or natural disturbances, was equal to 1738 Gg C yr-1 (official estimates) and 630 Gg C yr-1 (IUTI estimates). Results for the official estimates are consistent with the estimates reported by Italy to the KP for the period 2008-2010; for 2011 our estimates are about 20% higher than the country’s data, probably due to different assumptions on the fire disturbances, the AR rate and the dead wood and litter pools. Furthermore, our analysis suggests that: (i) the impact on the AR sink of different assumptions of species composition is small; (ii) the amount of harvest provided by AR has been negligible for the past (< 3%) and is expected to be small in the near future (up to 8% in 2020); (iii) forest fires up to 2011 had a small impact on the AR sink (on average, < 100 Gg C yr-1). Finally the comparison of the historical AR rates reported by NIR and IUTI with other independent sources gives mixed results: the regional inventories support the AR rates reported by the NIR, while some local studies suggest AR rates somehow intermediate between NIR and IUTI. In conclusion, this study suggests that the CBM can be applied at country level to estimate the C stock changes resulting from AR, including the effect of harvest and fires, though only a comparison with results based on direct field measurements could verify the model’s capability to estimate the real C stock change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.