Abstract

The current method for investigating the blinking behavior is to immobilize quantum dots (QDs) in the matrix and then apply a fluorescent technique to monitor the fluorescent trajectories of individual QDs. So far, no method can be used to directly assess the blinking state of ensemble QDs in free solution. In this study, a new method was described to characterize the blinking state of the QDs in free solution by combining single molecule fluorescence correlation spectroscopy (FCS) with ensemble spectroscopic methods. Its principle is based on the observation that the apparent concentration of bright QDs obtained by FCS is less than its actual concentration measured by ensemble spectroscopic method due to the QDs blinking. We proposed a blinking index (Kblink) for characterizing the blinking state of QDs, and Kblink is defined as the ratio of the actual concentration (Cb,actual) measured by the ensemble spectroscopic method to the apparent concentration (Cb,app) of QDs obtained by FCS. The effects of certain factors such as laser intensity, growth process, and ligands on blinking of QDs were investigated. The Kblink data of QDs obtained were successfully used to characterize the blinking state of QDs and explain certain experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call