Abstract

ObjectiveBone staples are internal fixation devices that are frequently used in the foot, ankle, and hand to provide stabilization. Fixation stability is vital after fusion or fracture surgeries to ensure proper bone healing. Patients undergoing surgeries that require fixation to keep bones aligned and stable may present with diminishing bone mechanical properties, and this may compromise the ability of the fixation hardware to maintain a stable construct. The purpose of this study was to investigate the mechanical performance of shape memory and superelastic nitinol bone staples with different bridge geometries in normal, osteopenic, and osteoporotic bone models. Contact forces and maximum principal stress and strain in the bone were recorded. MethodsFinite element simulations of a bone staple fixation procedure were performed to examine the initial and post-surgery contact force, as well as the maximum principal stress and strain of 15 mm bridge and 20 mm bridge staple-bone constructs. ResultsShape memory nitinol staples exhibited higher contact forces compared to superelastic nitinol staples. Nitinol bone staples with 20 mm bridge lengths displayed higher contact forces and lower stresses in all bone types, as well as lower strains in osteoporotic bone models compared to nitinol staples with a 15 mm bridge length. ConclusionNitinol bone staple constructs with 20 mm bridge length staples provide higher contact forces and display lower stresses in the bone than 15 mm bridge staple-bone constructs, which may be beneficial in bone with diminishing mechanical properties. Both superelastic and shape memory effect nitinol staples provide adequate compression and stress relief. However, if osteopenia is present, shape memory effect nitinol staples with a 20 mm bridge length may provide more stress relief and compression, if the bone anatomy allows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call