Abstract

AbstractAn aquatic hazard assessment was conducted for branched and linear nonionic surfactants using toxicity and biodegradation measurements. Four nonionic alcohol ethoxylate surfactants with different degrees of branching (ranging from 0.1, essentially linear, to 4.0 internal methyl groups per hydrophobe) were evaluated for neat surfactant toxicity, degradation in laboratory sewage treatment units, and aquatic toxicity of treated effluents. Acute testing with neat surfactants showed ranges for EC50s of 1.3 to 11.6 mg/L for Daphnia, 1.6 to 6.1 mg/L for Pimephales promelas (fathead minnow), and 1.5 to 11.4 mg/L for Microtox®. Chronic testing of algae showed NOECs of 1 to 10 mg/L and maximum acceptable toxicant concentrations (MATCs) of 0.8 to 14.2 mg/L. Seven‐day chronic estimation tests showed MATCs of 0.6 to 41.4 mg/L for Pimephales promelas and 1 to 14 mg/L for Daphnia. Effluents collected from treatment units receiving a 50‐mg/L surfactant feed at 25°C showed no acute toxicity to either Daphnia or fathead minnows, with the exception of a unit containing nonylphenol ethoxylate. Chronic effluent toxicity was greatest in effluent from the nonyl‐phenol ethoxylate unit and least in the effluent from the linear alcohol ethoxylate unit. Chronic toxicity of the highly branched C13 alcohol ethoxylate effluent was greater than that for the linear alcohol ethoxylate unit effluent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call