Abstract

Surface modification and functionalization is typically required to engineer upconversion nanoparticles (UCNPs) for biosensing and bioimaging applications. Nevertheless, despite various antibody conjugation methods having been applied to UCNPs, no consensus has been reached on the best choice, as the results from individual studies are largely unable to be compared due to inadequate assessment of the properties of the conjugated products. Here, we introduce a systematic approach to quantitatively evaluate the biological activity of antibody-conjugated UCNPs. We determine that the optimal antibody conjugation efficiency to our colominic acid polysaccharide-coated UCNPs via 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxy succinimide (EDC/NHS) coupling is approximately 70%, corresponding to 16 antibodies per nanoparticle of 63 nm hydrodynamic diameter, with on average 12 of the 16 antibodies maintaining their affinity to the target antigens. The binding ability of the antibody-conjugated UCNPs to the antigen was well preserved, as verified by enzyme-linked immunosorbent assay (ELISA), flow cytometry, and cellular imaging. This is the first study to quantitate the active antibody binding capacity of polysaccharide coated UCNP nanoparticles, offering a practical guideline for benchmarking functionalised UCNPs in future studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.