Abstract
KIT is a type 3 receptor tyrosine kinase that plays a crucial role in cellular growth and proliferation. Mutations in KIT can dysregulate its active–inactive equilibrium. Activating mutations drive cancer growth, while deactivating mutations result in the loss of skin and hair pigmentation in a disease known as piebaldism. Here, we propose a method based on molecular dynamics and free energy calculations to predict the functional effect of KIT mutations. Our calculations may have important clinical implications by defining the functional significance of previously uncharacterized KIT mutations and guiding targeted therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.