Abstract

Ordered mesoporous carbon (OMC) scaffolds were covalently modified with primary amine groups by means of oxidation-coupling, yielding C-O-C bonds, or organometallic activation-coupling, yielding C-C bonds. The aminated OMCs were stressed by immersion in either 1 M hydrochloric acid or 1 M sodium hydroxide solutions at room temperature for 6 h and characterized by nitrogen sorption, electron microscopy, low-angle X-ray diffraction, thermogravimetric analysis, and the 4-nitrobenzaldehyde assay. Results demonstrate that aminated surfaces of OMC by butyllithium grafting are stable toward both 1 M HCl and 1 M NaOH, whereas the oxidation-aminated OMC surfaces can withstand 1 M NaOH only. This study illustrates the importance of chemical testing to supplant chemical intuition when tailoring carbon surfaces for applications where strong acids or bases are employed. This is especially emphasized for carbonaceous materials because of the surface heterogeneity among different carbon allotropes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.