Abstract
Objective: There has been considerable discussion regarding the accuracy of topographic electroencephalographic (EEG) maps for assessing local cerebral function. We performed this study to test the accuracy of EEG mapping by examining the association between electrical activity and the perfusion under each electrode as another measure of local cerebral function. Methods: EEG mapping was performed simultaneously with H 2 15O positron emission tomography (PET) scanning in 6 normal adult subjects, both at rest and during a simple motor task. EEG data were processed using 3 different montages; two EEG power measures (absolute and relative power) were examined. Results: Relative power had much stronger associations with perfusion than did absolute power. In addition, calculating power for bipolar electrode pairs and averaging power over electrode pairs sharing a common electrode yielded stronger associations with perfusion than data from referential or single source montages. Conclusions: These findings indicate (1) that topographic EEG mapping can accurately reflect local brain function in a way that is comparable to other methods, and (2) that the choice of EEG measure and montage have a significant influence on the degree with which maps reflect this local activity and function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Electroencephalography and Clinical Neurophysiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.