Abstract
In the context of global warming, comprehending the dynamics of terrestrial water storage (TWS) and its responses to natural and anthropogenic factors is paramount for hydrological research and the management of water resources in China. This study utilized GRACE (Gravity Recovery and Climate Experiment)/GRACE-Follow On (GRACE-FO) satellite data to analyze terrestrial water storage across nine basins in China from 2005 to 2020 at multiple temporal and spatial scales. Subsequently, employing a Geographic detector model, potential influencing factors were identified, and an enhanced Geographically Weighted Regression (GWR) method was proposed for attributing changes in TWS in China. The findings reveal a consistent declining trend in TWS based on GRACE/GRACE-FO data across different temporal scales, with the most pronounced decreases observed in August and September. Geographic Detector analysis unveils significant interactions among various environmental factors, with climate variables playing a pivotal role in modulating hydrological characteristics of major river basins, where rising temperatures can exacerbate the severity of precipitation events, thus increasing the risk of floods and droughts. Moreover, analysis of the primary influencing factors indicates significant impacts of population density and topography on water resources in the southeastern and southwestern regions, particularly amidst increasing human activities and urbanization expansion. The results of this study are crucial for comprehending the dynamic changes and mechanisms of TWS in China, as well as for formulating water resource management strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.