Abstract

Despite advancements in using multi-temporal satellite data to assess long-term changes in Northeast India's tea plantations, a research gap exists in understanding the intricate interplay between biophysical and biochemical characteristics. Further exploration is crucial for precise, sustainable monitoring and management. In this study, satellite-derived vegetation indices and near-proximal sensor data were deployed to deduce various physico-chemical characteristics and to evaluate the health conditions of tea plantations in northeast India. The districts, such as Sonitpur, Jorhat, Sibsagar, Dibrugarh, and Tinsukia in Assam were selected, which are the major contributors to the tea industry in India. The Sentinel-2A (2022) data was processed in the Google Earth Engine (GEE) cloud platform and utilized for analyzing tea plantations biochemical and biophysical properties. Leaf chlorophyll (Cab) and nitrogen contents are determined using the Normalized Area Over Reflectance Curve (NAOC) index and flavanol contents, respectively. Biophysical and biochemical parameters of the tea assessed during the spring season (March-April) 2022 revealed that tea plantations located in Tinsukia and Dibrugarh were much healthier than the other districts in Assam which are evident from satellite-derived Enhanced Vegetation Index (EVI), Modified Soil Adjusted Vegetation Index (MSAVI), Leaf Area Index (LAI), and Fraction of Absorbed Photosynthetically Active Radiation (fPAR), including the Cab and nitrogen contents. The Cab of healthy tea plants varied from 25 to 35µg/cm2. Pearson correlation among satellite-derived Cab and nitrogen with field measurements showed R2 of 0.61-0.62 (p-value < 0.001). This study offered vital information about land alternations and tea health conditions, which can be crucial for conservation, monitoring, and management practices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call