Abstract

The METRIC energy balance model uses an auto-selection approach for identifying hot (dry, bare soil) and cold (fully transpiring crop) anchor pixels for the internal calibration of the model. When an unmanned aerial system (UAS) is used for imagery, the small image size and the varying crop and soil water status of agricultural fields make the identification of reliable hot and cold pixels challenging. In this study, we used an experimental spearmint field under three irrigation levels (75%, 100%, and 125% of crop evapotranspiration, ETc). As a way of providing diverse field conditions, six different extents (Extent 1 to Extent 6) were selected from each day of the seven days of UAS imagery campaigns of the same field for generating UAS-based ETc maps using auto-selection of hot and cold anchor pixels for the internal calibration of the model. Extent 1 had the smallest coverage area of the field, including only plants that were irrigated at 75% of ETc, while the fields of view of the other extents increased to where the Extent 6 covered the spearmint field and all the surroundings including trees, a nearby water canal, irrigated grass, and irrigated and non-irrigated soil. The results showed that different sizes of extent resulted in the selection of variable hot (bare, but moist soil in small extents, and dry bare soil at the larger extents) and cold anchor pixels (crop under water stress at the small extents, and tree canopy or grass alongside the water canal at the larger extents). This variation resulted in significantly different ETc estimation for the same spearmint crop field, indicative of a potential limitation for the use auto-selection of hot and cold pixels when using the UAS-METRIC model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.