Abstract

Coral reef resilience is eroding at multiple spatial scales globally, with broad implications for coastal communities, and is thus a critical challenge for managing marine social-ecological systems (SESs). Many researchers believe that external stressors will cause key coral reefs to die by the end of the 21st century, virtually eliminating essential ecological and societal benefits. Here, we propose the use of resilience-based approaches to understand the dynamics of coral reef SESs and subsequent drivers of coral reef decline. Previous research has demonstrated the effectiveness of these methods, not only for tracking environmental change, but also for providing warning in advance of transitions, possibly allowing time for management interventions. The flexibility and utility of these methods make them ideal for assessing complex systems; however, they have not been used to study aquatic ecosystem dynamics at the global scale. Here, we evaluate these methods for examining spatiotemporal change in coral reef SESs across the global seascape and assess the subsequent impacts on coral reef resilience. We found that while univariate indicators failed to provide clear signals, multivariate resilience-based approaches effectively captured coral reef SES dynamics, unveiling distinctive patterns of variation throughout the global coral reef seascape. Additionally, our findings highlight global spatiotemporal variation, indicating patterns of degraded resilience. This degradation was reflected regionally, particularly in the Pacific Ocean and Indian Ocean SESs. These results underscore the utility of resilience-based approaches in assessing environmental change in SESs, detecting spatiotemporal variation at the global and regional scales, and facilitating more effective monitoring and management of coral reef SESs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.