Abstract
Seafood consumption is the primary route of methylmercury (MeHg) exposure for most populations. Inherent uncertainties in dietary survey data point to the need for an empirical tool to confirm exposure sources. We therefore explore the utility of Hg stable isotope ratios in human hair as a new method for discerning MeHg exposure sources. We characterized Hg isotope fractionation between humans and their diets using hair samples from Faroese whalers exposed to MeHg predominantly from pilot whales. We observed an increase of 1.75‰ in δ202Hg values between pilot whale muscle tissue and Faroese whalers’ hair but no mass-independent fractionation. We found a similar offset in δ202Hg between consumed seafood and hair samples from Gulf of Mexico recreational anglers who are exposed to lower levels of MeHg from a variety of seafood sources. An isotope mixing model was used to estimate individual MeHg exposure sources and confirmed that both Δ199Hg and δ202Hg values in human hair can help identify dietary MeHg sources. Variability in isotopic signatures among coastal fish consumers in the Gulf of Mexico likely reflects both differences in environmental sources of MeHg to coastal fish and uncertainty in dietary recall data. Additional data are needed to fully refine this approach for individuals with complex seafood consumption patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.