Abstract
Recent enhanced urbanization and industrialization in China have greatly influenced soil Cu content. To better understand the magnitude of Cu contamination in soil, it is essential to understand its spatial distribution and estimate its values at unsampled points. However, Kriging often can not achieve satisfactory estimates when soil Cu data have weak spatial dependence. The proposed classification and regression tree method (CART) simulated Cu content using environmental variables, and it had no special data requirements. The Cu concentration classes estimated by CART had accuracy in attribution to the right classes of 80.5%, this is 29.3% better than ordinary Kriging method. Moreover, CART provides some insight into the sources of current soil Cu contents. In our study, low soil Cu accumulation was driven by terrain characteristic, agriculture land uses, and soil properties; while high Cu concentration resulted from industrial and agricultural land uses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.