Abstract

Abstract Coincident top-of-atmosphere (TOA) radiative fluxes and cloud optical properties for portions of clouds whose tops are exposed to space within several pressure ranges are used to evaluate how a GCM realizes its all-sky radiative fluxes and vertical structure. In particular, observations of cloud properties and radiative fluxes from the Clouds and the Earth’s Radiant Energy System (CERES) Science Team are used to assess the Canadian Centre for Climate Modeling and Analysis atmospheric global climate model (CanAM4). Through comparison of CanAM4 with CERES observations it was found that, while the July-mean all-sky TOA shortwave and longwave fluxes simulated by CanAM4 agree well with those observed, this agreement rests on compensating biases in simulated cloud properties and radiative fluxes for low, middle, and high clouds. Namely, low and middle cloud albedos simulated by CanAM4 are larger than those observed by CERES attributable to CanAM4 simulating cloud optical depths via large liquid water paths that are too large but are partly compensated by too small cloud fractions. It was also found that CanAM4 produces 2D histograms of cloud fraction and cloud albedo for low, middle, and high clouds that are significantly different than generated using the CERES observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.