Abstract

Traditional maize grain is deficient in methionine, an essential amino acid required for proper growth and development in humans and poultry birds. Thus, development of high methionine maize (HMM) assumes great significance in alleviating malnutrition through sustainable and cost-effective approach. Of various genetic loci, aspartate kinase2 (ask2) gene plays a pivotal role in regulating methionine accumulation in maize. Here, we sequenced the entire ask2 gene of 5394bp with 13 exons in five wild and five mutant maize inbreds to understand variation at nucleotide level. Sequence analysis revealed that an SNP in exon-13 caused thymine to adenine transversion giving rise to a favourable mutant allele associated with leucine to glutamine substitution in mutant ASK2 protein. Gene-based diversity analysis with 11 InDel markers grouped 48 diverse inbreds into three major clusters with an average genetic dissimilarity of 0.570 (range, 0.0-0.9). The average major allele frequency, gene diversity and PIC are 0.693, 0.408 and 0.341, respectively. A total of 45 haplotypes of the ask2 gene were identified among the maize inbreds. Evolutionary relationship analysis performed among 22 orthologues grouped them into five major clusters. The number of exons varied from 7 to 17, with lengthvarying from 12 to 495bp among orthologues. ASK2 protein with 565 amino acids was predicted to be in homo-dimeric state with lysine and tartaric acid as binding ligands. Amino acid kinase and ACT domains were found to be conserved in maize and orthologues. The study depicted the presence of enough genetic diversity in ask2 gene in maize, and development of HMM can be accelerated through introgression of favourable allele of ask2 into the parental lines of elite hybrids using molecular breeding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call