Abstract

Toxic substances exert impacts on ecosystems at several levels: biogeochemical, toxicological, and populations/communities. Integrating exposure (biogeochemistry) and effects (toxicology) into an ecological context requires models as a necessary step to prediction and assessment of effects on populations and their interactions. To this end, research is being conducted to develop techniques for predicting the effects of Se on aquatic ecosystems. The objective is to develop mechanistic models to predict biogeochemical cycling, toxicological processes, and toxic effects on population and community dynamics. Earlier research demonstrated that different chemical forms of Se have different toxicological properties. Biogeochemical research culminated with a dynamic model of the Se cycle. In ongoing research, experiments are being conducted on microorganisms, phytoplankton, microzooplankton, zooplankton, benthic invertebrates, and fish to measure uptake, biotransformation, and depuration kinetics of different chemical forms of Se, transfer through the food web, and effects on growth, reproduction, community interactions, and survival. This information will provide the basis for the ecosystem effects model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.